A major challenge for semantic video segmentation is how to exploit the spatiotemporal information and produce consistent results for a video sequence. Many previous works utilize the precomputed optical flow to warp the feature maps across adjacent frames. However, the imprecise optical flow and the warping operation without any learnable parameters may not achieve accurate feature warping and only bring a slight improvement. In this paper, we propose a novel framework named Dynamic Warping Network (DWNet) to adaptively warp the interframe features for improving the accuracy of warping-based models. Firstly, we design a flow refinement module (FRM) to optimize the precomputed optical flow.........
Loading....